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INTRODUCTION 
Studies that investigate human locomotion traditionally rely 
on motion capture experiments to record marker trajectories 
and ground forces. These data are input into musculoskeletal 
models and analyses (e.g. inverse dynamics and static 
optimization [1]) or tracking simulations (e.g. computed 
muscle control [2]) are performed. This investigative 
paradigm is limited because it must be driven by experimental 
data and cannot predict kinematic adaptations caused by 
variations in the model (e.g. gait adaptation as a result of 
strengthening or weakening a muscle). On the other hand, 
forward simulations driven by control laws instead of 
experimental data can serve as a predictive paradigm. This 
predictive paradigm enables investigation of ‘what-if’ 
questions, providing insight into how athletes may benefit 
from interventions such as optimizing strength training to 
deliver maximum athletic performance. Running has recently 
gained considerable attention in both the scientific press [1-3] 
and colloquial media, with specific regard to performance 
enhancement. Do artificial limbs yield performance benefits? 
Can gait re-training improve maximum running speed? Before 
predictive simulations can be used to explore such questions, 
it must first be shown that realistic human locomotion can be 
predicted. The aim of this study was to generate a predictive 
3D muscle-driven simulation of running and assess the fidelity 
of the simulation by comparison to experimental data. 
 
METHODS 
The musculoskeletal model (Fig. 1) was actuated by 16 Hill-
type musculotendon units (8 on each leg to actuator the ankle, 
knee, and hip in the sagittal plane), and 19 torque motors (to 
actuate the coronal and transverse plane of the lower limbs, 
and upper limbs). Physiologically accurate muscle models [4] 
and moment arms [5] were used in the whole body model (i.e., 
force-length-velocity curves and moment-arm-angle curves 
were based on experimental data). Feedback control laws [6,7] 
governed actuator excitations as each limb progressed through 
four states: first and second half of stance, and first and second 
half of swing (Table 1). Stance and swing transitions were 
based on the foot making and breaking contact with the 
ground, and inter-stance/inter-swing transitions were based on 
the sagittal plane distance between the ankle joint center and 
the model mass center [7]. Actuator control laws were 
grouped into three categories: force feedback, length feedback 

and proportional-derivative control (Table 1). A total of 118 
design variables fully prescribed a simulation (85 for actuator 
controllers and 33 for initial conditions). Optimization was 
used to solve for these variables by parallelizing simulations 
across 95 CPU nodes (defined as a single iteration) using a 
Covariance Matrix Adaptation evolution strategy [8]. The 
main components of the objective function were: i) minimize 
metabolic energy across muscle actuators [5]; ii) minimize 
torque across joint actuators; and iii) achieve a target speed of 
3.5 m/s without falling for as long as possible. We terminated 
the optimization after 5 days (~1500 iterations) and reported 
the first full gait cycle. For comparison, experimental data 
(n=9, 3.5 ± 0.12 m/s) from a previous study [1] were used to 
evaluate the predictive capacity of the optimization. 
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Figure 1:  The predictive model implemented in OpenSim. 
The model had: [A] 36 degrees of freedom; and [B] 8 
musculotendon actuators per leg, each bound by [C] force-
length-velocity properties and [D] first order excitation-
activation dynamics. [E] Ground contact was specified by 6 
Hunt-Crossley spheres with Coulomb friction on each foot, 
with a stiffness of 2e7 N/m, coefficient of friction µ = 0.8, and 
transition velocity ɸ = 0.005 m/s. [F] Each limb progressed 
through a finite state machine, which determined the unique 
excitation control law for each actuator. 



RESULTS AND DISCUSSION 
The average model running speed across the gait cycle was 
3.21 m/s. The simulation captured the basic features of 
running in the hip, knee, and ankle (Fig. 2), although the ankle 
was more plantarflexed than human runners during the flight 
phase. The recruitment of muscles in the predictive simulation 
were temporally consistent with experimental EMG data (Fig. 
3, compare red and blue lines). Muscle forces in the predictive 
simulation had similar timing to those estimated with static 
optimization, though several muscles differed in magnitude 
(Fig. 3, red and black lines). Specifically, GAS, VAS and 
ILPSO developed higher peak forces, and GMAX developed 
peak force during terminal stance instead of terminal swing. 
HAMS developed greater force in stance than in swing, 
contrary to previous estimates [1]. TA was the muscle that 
most disagreed with EMG activity and is likely related to 
excessive ankle plantarflexion throughout the simulation. 
Differences in the quantitative muscle forces between our 
previous [1] and current solutions (Fig. 3) may be partially 
attributed to the two models differing in inertial properties, the 
number of muscles in the model, and moment arms.  
 

-20

0

20

40

HIP KNEE ANKLE

-120

-80

-40

0

-40

-20

0

20

EXT

EXT

P-FLEX

D-FLEXFLEX

Stance Swing Stance Swing Stance Swing

 

 

Figure 2:  Sagittal plane joint kinematics of the lower limb 
(deg). Experimental results [1] (black, shaded area is 1 
standard deviation) and model-predicted results (red).  
 

Computational time limited the number of simulations that 
could be performed during the optimization. The successful 
stride simulated at ~40X slower than real time. We attribute 
this primarily to the stiff contact and Coulomb friction models 
used in foot-ground interaction (Fig 1E), which result in small 
integration steps and foot-slipping at low tangential velocities. 
We are improving the simulation by implementing a new 
constraint-based rigid contact algorithm that will eliminate 
foot-slipping and compliant contact stiffness. We believe this 
will reduce simulation times and allow a greater number of 
simulation iterations to be run so that we can converge to more 
human like kinematics. It should also provide the capability to 
optimize over multiple strides and at faster running speeds.  
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Figure 3:  Muscle forces (N). Static optimization results [1] 
(black, shaded area is 1 std. dev.) and model-predicted (red). 
Blue lines indicate on-off patterns of experimental EMG [1]. 
 
CONCLUSIONS 
The predictive optimization demonstrated here is a powerful 
tool that can capture the characteristics of human running in 
feasible time without experimental data. Implemented in 
OpenSim [1,2,4,9], it can take advantage of physiologically 
accurate muscle models and an accurate physics engine, and 
be distributed among a growing community. Our goal is to use 
the framework presented here to simulate faster running 
speeds and investigate the limitations of maximum sprinting in 
humans. We also aim to make ‘what-if’ studies in 
musculoskeletal biomechanics more easily accessible by 
building the optimization infrastructure into OpenSim. 
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Table 1: Control strategy for predictive model actuators. 85 controller design variables were optimized (torques: 29; muscles: 56). 
 

Actuator Control strategy used to compute actuator excitation 
 

 1’st half of STANCE 2nd half of STANCE 1st half of SWING 2nd half of SWING 
Iliacus/Psoas (ILPSO) PD control to maintain upright torso posture stretch feedback (ILPSO) PD control for sagittal hip 
Gluteus Maximus (GMAX) PD control to maintain upright torso posture force feedback (GMAX) PD control for sagittal hip 
Biarticular Hamstrings (HAMS) PD control to maintain upright torso posture force feedback (HAMS) 
Rectus Femoris (RF) constant control constant control 
Vasti (VAS) Force feedback (VAS) & P control for sagittal knee constant control PD control for sagittal knee 
Gastrocnemius (GAS) force feedback (GAS) constant control 
Soleus (SOL) force feedback (SOL) constant control 
Tibialis Anterior (TA) stretch feedback (TA) & force feedback (SOL) stretch feedback (TA) 
Ideal Torque Actuators PD control to achieve a target “stance phase” posture PD control to achieve a target “swing phase” posture 


